
Eco-Kci-Me-144 NN_01 7/02/2023 Page 1 / 5

Memo on the Neural Network formulation

Summary

1 Introduction ..1

2 Basic sketch of a Neural Network ..2

2.1 Notations for indexes in Neural Network (NN) ... 2

3 Main relation of a NN ..2

4 Criterium based on the observed error..3

4.1 Error to be minimized... 3

4.2 Gradient assessment: partial derivative with respect to the weights 3

4.2.1 Case of last layer � ... 3

4.2.2 Case of lower layers .. 3

4.3 Gradient descent recurrence form from last layer � down to the second layer 4

4.4 Weights trim recurrence form from first layer up to last layer...................................... 4

5 Artificial neuron From Wikipedia, the free encyclopedia ...5

6 Basic structure...5

7 References ..5

1 Introduction
This short note is dealing with the leaning process of a Neural Network (NN).

Neural networks are very simple devices with number of numbers: an organisation with
multiple layers help to formalise the equations between layers. By adjusting the numbers
adequately (i.e. the learning process), the outputs of the NN can be used to forecast values.

So, one important process of a NN is the learning process, this is obtained by adjusting the
values of the weights taken into account for output the resulting values of the NN.

This learning process is based on the Gradient Descent principle within a backward
propagation.

This short note is essentially dealing with the evaluation of the gradient, i.e. the partial
derivatives of the error with respect to the weights in each layer. A recurrence form is output
for the implementation of the learning process into a computer code.

Eco-Kci-Me-144 NN_01 7/02/2023 Page 2 / 5

2 Basic	sketch of	a	Neural	Network
See first § 5 and §6 below. The following figure is a 4 layers network, adapted from [R 1]:

Hence, each neurons of layer � depends on number of neurons of previous layer ����. � for the size
of the corresponding weights � ,,��� �� ����.�. Those weights cannot be saved in the layer � − 1 because those weights
shall be set independently for each neuron � in layer �.

2.1 Notations for indexes in Neural Network (NN)
In order to avoid confusions, it is important to distinguish the meanings of the
successive indexes used, particularly for the neuron’s output value � and for the weights
�:

��,�

 ��,�,�

With a TYPE definition, one set the dimensions of the NN with �� layers to :
���� �� ��.N the number of neurons in layer i
���� �� ��. ����� �� ��.�. � abbreviated here as ��,�
���� �� ��. ����� �� ��.�. ���� �� ����.� abbreviated here as ��,�,�

Hence the short “����,���,�,�” is the product of the output value of the neuron � in layer � − 1 by
the weight in the neuron � of layer � dedicated to the neuron � of layer � − 1.

3 Main	relation	of	a	NN
The main relation of a NN is that the output value ��,� of layer � and neuron � is coming from
the weighted sum of outputs of previous layer � − 1 , where � is the activation function:

��,� = ����,�� ��,� = ∑ ��−1,���,�,�
��−1.�
�=1 ��,� = ��∑ ��−1,���,�,�

��−1.�
�=1 �

In the same way, for lower layers:

����,� = ������,��, ����,� = ∑ ��−2,���−1,�,�
��−2.�
�=1 so ��,� = ∑ ������,����,�,�

��−1.�
�=1

and so on down to the second layer and first layer with the inputs of the NN.

����,� = ������,�� ����,� = ∑ ��−3,�����,�,�
����.�
��� ����,� = ∑ ������,������,�,�

����.�
���

��,� = ∑ ��∑ ����−2,����−1,�,�
��−2.�
�=1 ���,�,�

��−1.�
�=1 …

first index for the layer: � the layer index
second index for the neuron: � the neuron index in layer �

second index for the neuron: � the neuron index in layer �

third index for the neuron in previous layer: � of the layer � − 1

Eq. 1

Eq. 2

Eq. 3

Eq. 4

4 43 3Number of neurons per layer

1st layer
inputs

2nd layer
hidden

3rd layer
hidden

4th Last layer
outputs

��,�,��� �� � ��,�,��� �� � ��,�,��� �� �

��,�

��,�

��,�

��,�

��,� = � �� ��−1,���,�,�

��−1.�

�=1
�

W(,,3)

Here W(,,4) shows the third

index size of weight ��,�,�
W(,,4)

��,�

��,�

��,�

Eco-Kci-Me-144 NN_01 7/02/2023 Page 3 / 5

4 Criterium	based	on	the	observed	error
4.1 Error to be minimized
For the neurons in the last layer �, the error criterium of the overall result is:

� = �
� ∑ ������ − ��,�����.�

��� � = �
� ∑ ��

���.�
���

with ����� the expected result for neuron � and ��,� the signal output: ����� − ��,� = ��

To adjust the neurons weights to minimize the overall error criteria, each weight shall be
trimmed to follow the opposite direction of the derivative ��

���,�,�
 (Gradient Descent).

4.2 Gradient assessment: partial derivative with respect to the weights
Let � being the weight with respect to which one want a partial derivative:

� = �
�

∑ ��
���.�

��� ��
�� = �

�
��∑ ��

���.�
��� �
�� the partial derivatives are applied to each term of the sum, so:

��
�� = �

�
∑ ���

�

��
��.�
��� which gives ��

�� = �
�

∑ 2��
���
��

��.�
��� i.e. ��

�� = ∑ ��
���
��

��.�
���

Because one has for every index �, � : ��,� = ����,�� , ��,� = ∑ ����,���,�,�
����.�
��� and

���,�
�����,�

= ∑ �����,���,�,�
�����,�

����.�
���

the general form of the error can be developed as seen in § 3 (here with 4 sums):

 ��
�� = ∑ ��

���
���,�

�∑ �����,���,�,�
�����,�

�∑ �����,�����,�,�
�����,�

����.�
��� �∑ �����,�����,�,�

�����,�

�����,�
��

����.�
��� ������.�

��� ���.�
��� …etc.

4.2.1 Case	of	last	layer	�
For the last layer �, the weights are � = ��,�,� , so the development includes the two first sums:

 ��
���,�,�

= ∑ ��
���

���,�
�∑ �����,���,�,�

���,�,�
����.�
��� ���.�

��� (from eq. 8)

Note 1: For the last layer, �� = ����� − ��,� so �� = ����� − ����,��, hence
���

���,�
= (−1) ���,�

���,�
.

Note 2: � = �(�) being a sigmoid, i.e. �(�) = �
����� , its derivative is: ��

�� = �(1 − �) .
Note 3: because in the sums over � and � only one term is dependent on ��,�,� , thus those sums disappear.

Hence eventually one gets: ��
���,�,�

= ��(−1)��,��1 − ��,������,�

For a recurrence one sets ��
���,�,�

= ��,�����,� with ��,� = ��
���

���,�
 i.e. ��,� = �� (−1)��,��1 − ��,��

4.2.2 Case	of	lower	layers	
For other layers, starting with � − 1, the weights are of the form � = ����,�,� so, from eq. 8,
the development includes 3 sums:

 ��
�����,�,�

= ∑ ��
���

���,�
�∑ �����,���,�,�

�����,�
�∑ �����,�����,�,�

�����,�,�

����.�
��� �����.�

��� ���.�
���

And because in the last sums over � and � only one term is dependent on ����,�,� , those
sums disappear, but it remains for sure the sum over � :

 ��
�����,�,�

= ∑ ��
���

���,�

�����,���,�,�
�����,�

�����,�����,�,�
�����,�,�

��.�
��� = ∑ ��(−1)��,��1 − ��,����,�,�����,��1 − ����,������,�

��.�
���

The recurrence remains ��
�����,�,�

= ����,�����,� with ����,� = ∑ ��
���

���,�

�����,���,�,�
�����,�

��.�
���

i.e. ����,� = ∑ ��,�
�����,���,�,�

�����,�
��.�
��� i.e. ����,� = ∑ ��,���,�,�����,��1 − ����,����.�

���

Eq. 8

Eq. 10

Eq. 11

Eq. 9

Eq. 6

Eq. 7

Eq. 5

Eco-Kci-Me-144 NN_01 7/02/2023 Page 4 / 5

For other layers � − 2, the weights are of the form � = ����,�,� so, from eq. 8:
 ��
�����,�,�

= ∑ ��
���

���,�
�∑ �����,���,�,�

�����,�
�∑ �����,�����,�,�

�����,�
����.�
��� �∑ �����,�����,�,�

�����,�,�
����.�
��� ������.�

��� ���.�
���

And because in the last sums over � and � only one term is dependent on ����,�,�, those sums disappear, but
it remains the sums over � and �:

 ��
�����,�,�

= ∑ ��
���

���,�
�∑ �����,���,�,�

�����,�
����,�,�����,��1 − ����,������,�

����.�
��� ���.�

���

Thanks to the distributive property of multiplication over addition, ∑ ��[∑ ���]� = ∑ ∑ ��� ��� = ∑ ∑ ������

one can reorganize the sums for the previous recurrence ����,� = ∑ ��
���

���,�

�����,���,�,�
�����,�

��.�
��� to appears clearly:

 ��
�����,�,�

= ∑ ∑ ��
���

���,�

�����,���,�,�
�����,�

��.�
���

����.�
��� ����,�,�����,��1 − ����,������,�

 ��
�����,�,�

= ∑ ��−1,�����,�,�����,��1 − ����,������,�
����.�
���

The recurrence remains ��
�����,�,�

= ����,���−3,� with ����,� = ∑ ����,�����,�,�����,��1 − ����,������.�
���

For other layers � − 3 and below, the weights are of the form � = ����,�,� the recurrence
equation remains: ��

�����,�,�
= ����,���−4,� with ����,� = ∑ ����,�����,�,�����,��1 − ����,������.�

���

4.3 Gradient descent recurrence form from last layer � down to the second layer
One summarises the following equations suited for a recurrence form:

When � is the last layer, ��
���,�,�

= ��,� ����,� with ��,� = −�� ��,��1 − ��,��

and for � − � (so not the last layer), ��
�����,�,�

= ����,� ����,� ����,� = ∑ ��,�
��.�
��� ��,�,�����,��1 − ����,�� but

while renaming � to � + 1, � to �, � and � to �, � to � one gets an obvious form of recurrence:

When � is not the last layer, ��
���,�,�

= ��,� ����,� with ��,� = ��,��1 − ��,�� ∑ ����,�
��+1.�
��� ����,�,�

4.4 Weights trim recurrence form from first layer up to last layer
��,�,� = ���,�,���������� ���� + � −��

���,�,�

with 1 ≥ � ≥ 0 the learning coefficient. This is the “Delta rule”. The negative sign is needed for the
iterative process to converge to the local minimum error, i.e. in opposite direction of the gradient
direction.

A further form “Generalized delta rule” of the trim equation takes into account a part of the error from
the previous learning step, with 1 ≥ � ≥ 0 a so-called momentum coefficient (form used in [R 2]):

��,�,� = ���,�,���������� ���� + � −��
���,�,�

+ � �� −��
���,�,�

�
�������� ����

Hence, this chapter concludes the possible implementation of the backward propagation of errors and
the trim of the weights (i.e. the learning process) in a computer code.

Eq. 14

Eq. 15

Eq. 16

Eq. 17

Eq. 12

Eq. 13

Eq. 18

Eco-Kci-Me-144 NN_01 7/02/2023 Page 5 / 5

5 Artificial	neuron	From	Wikipedia,	the	free	encyclopedia
An artificial neuron is a mathematical function conceived as a model of biological neurons in their
neural network with 200 types.
Artificial neurons are elementary units in an artificial neural network.
The artificial neuron �� � = 1, �
1. receives one or more inputs �� � = 1, � (representing synapse excitatory postsynaptic potentials

and inhibitory postsynaptic potentials at neural dendrites)
2. and sums them
3. to produce an output �� (or activation, representing a neuron's action potential which is

transmitted along its axon).
4. But usually each input is separately weighted, ��,� � = 1, � � = 1, �
5. and the sum is passed through an activation function � or transfer function (non-linear function).
The transfer functions usually have a sigmoid shape

but they may also take the form of other non-linear functions, piecewise linear
functions, or step functions. They are also often monotonically increasing,
continuous, differentiable and bounded. Non-monotonic, unbounded and oscillating
activation functions with multiple zeros that outperform sigmoidal and ReLU
(Rectified Linear Unit) like activation functions on many tasks have also been recently
explored.

The thresholding function has inspired building logic gates referred to as threshold logic;
applicable to building logic circuits resembling brain processing.
For example, new devices such as memristors have been extensively used to develop such logic in recent times.[2]

The artificial neuron transfer function should not be confused with a linear system's transfer function.

6 Basic	structure
For a given artificial neuron k, let there be m inputs with signals x1 through xm and weights wk1

through wkm. Usually, the x0 input is assigned the value +1, which makes it a bias input with wk0 = bk. This leaves only

m actual inputs to the neuron: from x1 to xm. The output of the kth neuron is, with � phi the transfer
function (commonly a threshold function):

The output is analogous to the axon of a
biological neuron, and its value propagates
to the input of the next layer, through a
synapse. It may also exit the system, possibly
as part of an output vector.

It has no learning process as such. Its transfer
function weights are calculated and
threshold value are predetermined.

7 References
[R 1] Marc Parizeau, « Le perceptron multicouche et son algorithme de rétropropagation des erreurs, » Université Laval
(Canada)

[R 2] Patrice Dargenton, « Configuration d'un réseau de neurones avec un méta-réseau de neurones, »
patrice.dargenton@free.fr

[R 3] Wikipedia, the free encyclopedia.

1

