Main hypothesis

1) Uniform temperature surface of each element (node)

Uniform Radiosity

2) Grey surfaces, grey body: that is $\rho_i = 1 - \varepsilon_i = 1 - \alpha_i$ $\varepsilon_{i} = \alpha_{i}$

3)Diffusely radiated Reflexion

4)Diffusely radiated Emission

5)No Transmission

Nota: Reflected O Absorbed α Emitted ε Transmitted τ and $\alpha + \rho + \tau = 1$

► Radiosity **B**i

Non intuitive notations F_{ij} the angular view factor from i toward j (see properties), A_i the surface (m²)

Net rate of heating (W) for the element *i* (rule Qi: positive when energy is leaving element i)

 $Q_i = Emitted - (Incident - Reflected)(W)$

 $Q_i = Emitted - Absorbed from Incident Radiation(W)$

$$\rho_i = 1 - \varepsilon_i = 1 - \alpha_i$$

$$Q_{i} = A_{i} \cdot \varepsilon_{i} \cdot \sigma \cdot \left(T_{i}\right)^{4} - A_{i} \cdot \alpha_{i} \cdot H_{i}$$

 \mathbf{H}_{i}^{\perp} Incident Radiant Heat flux on the element i due to the other elements j (W/m²)

(rule Hi: positive when energy is arriving on ${f i}$, thus positive as when leaving other ${f j}$)

For pure black bodies
$$Q_i = A_i \cdot \sigma \cdot \left(T_i\right)^4 - A_i \cdot H_i$$

$$H_{i} = \sum_{j} \left[\varepsilon_{j} \cdot \sigma \cdot \left(T_{j} \right)^{4} \cdot A_{j} \cdot F_{ji} \cdot \frac{1}{A_{i}} \right]$$

 $H_{i} = \sum_{j} \left[\varepsilon_{j} \cdot \sigma \cdot \left(T_{j} \right)^{4} \cdot A_{j} \cdot F_{ji} \cdot \frac{1}{A_{i}} \right] \qquad \text{With reciprocity rule,} \quad H_{i} = \sum_{i} \left[\varepsilon_{j} \cdot \sigma \cdot \left(T_{j} \right)^{4} \cdot F_{ij} \right]$

Black body emissive power =Heat power Emitted (W/m²) = $\sigma \cdot \left(T_{j}\right)^{4}$ with ε_{j} = 1. Because of $\sum_{i} F_{ij}$ = 1, one have $\left(T_{i}\right)^{4} = \sum_{j} \left\lfloor \left(T_{i}\right)^{4} \cdot F_{ij} \right\rfloor$

Thus: **1bis)**
$$Q_i = \sum_i \left[A_i \cdot F_{ij} \sigma \cdot \left[\left(T_i \right)^4 - \left(T_j \right)^4 \right] \right]$$

For gray bodies, by analogy, the black body emissive power into H₁ is replaced by the Radiosity B₂(W/m²) =Heat power Emitted +Reflected (rule Bi: idem rule Hi)

(rule Bi: idem rule Hi)

$$H_{i} = \sum_{j} \left(B_{j} \cdot F_{ij} \right) \text{ with } B_{j} = \varepsilon_{j} \cdot \sigma \cdot \left(T_{j} \right)^{4} + \rho_{j} \cdot H_{j} \text{ Note: this definition is implicit because } B_{j} \text{ is also a function of } B_{k} \text{ and itself } B_{j}$$

That gives also for the element
$$i$$
 $B_i = \varepsilon_i \cdot \sigma \cdot \left(T_i\right)^4 + \rho_i \cdot H_i$ hence $B_i = \varepsilon_i \cdot \sigma \cdot \left(T_i\right)^4 + \left(1 - \varepsilon_i\right) \cdot \left[\sum_j \left(B_j \cdot F_{ij}\right)\right]$ and $H_i = \frac{\left[B_i - \varepsilon_i \cdot \sigma \cdot \left(T_i\right)^4\right]}{\left(1 - \varepsilon_i\right)}$

$$\sum_{j} \left(X_{ij} \cdot B_{j} \right) = \sigma \cdot \left(T_{i} \right)^{4} \quad \text{with} \quad X_{ij} = \frac{\delta_{ij} - \left(1 - \varepsilon_{i} \right) \cdot F_{ij}}{\varepsilon_{i}} \quad \text{Note: Kronecker symbol : } \delta_{ii} = 1; \ \delta_{ij} = 0 \text{ for } i \neq j$$

With matrix notation, (B), (σT^4) being columns matrixes;

th matrix notation, (B), (σT^{τ}) being columns matrixes; $(X) \cdot (B) = (\sigma T^4)$ thus $(B) = (X^{-1}) \cdot (\sigma T^4)$ i.e. $B_i = \sum_i \left[(X^{-1})_{ij} \cdot \sigma (T_j)^4 \right]$ from 4) view factors & emissivity, matrix (X), its inverse (X^{-1})

Equations 1) and 3) for Hi give $Q_i = \frac{A_i \cdot \epsilon_i}{1 - \epsilon_i} \cdot \left[\sigma \cdot \left(T_i \right)^4 - B_i \right]$

Bi is known when Tj are known

That gives for open configurations
$$Q_{i} = \sum_{i} -\left[A_{i} \cdot \Lambda_{ij} \sigma \cdot \left(T_{j}\right)^{4}\right] \quad \text{with} \quad \Lambda_{ij} = \frac{\varepsilon_{i}}{1 - \varepsilon_{i}} \cdot \left[\delta_{ij} - \left(X^{-1}\right)_{ij}\right]$$

6) Finally, because
$$\sum_{j} \Lambda_{ij} = 0$$
, for all i :
$$Q_{i} = \sum_{j} \left[A_{i} \cdot \Lambda_{ij} \sigma \cdot \left[\left(T_{i} \right)^{4} - \left(T_{j} \right)^{4} \right] \right]$$
mat Radiation (R) is generated by $(A_{i} \cdot \Lambda_{ij})$ with definitions from 4) and 5) for closed configurations

Angle factor properties (to be verified for each new model)

Fij=diffuse energy leaving Ai directly toward and intercepted by Aj total diffuse energy leaving Ai

For all
$$i$$
: $\sum_{i} F_{ij} = 1$ and F_{ii} not always equal to zero (for concave elements)

For all i,j: $A_i \cdot F_{ij} = A_j \cdot F_{ji}$ Reciprocity rule (and **not** $A_j \cdot F_{ij} = A_i \cdot F_{ii}$!)

Nota

$$\sum_{j} F_{ij} = 1 \quad \text{and} \quad \sum_{j} \delta_{ij} = 1 \quad \text{imply} \quad \sum_{j} X_{ij} = 1 \quad \text{imply} \quad \sum_{j} \left[\left(\max X \right)^{-1} \right]_{ij} = 1$$

$$\lim_{j \to \infty} A_{ij} = 0$$

 $\text{mat}\!\left(A_{\hat{i}} \cdot F_{ij}\right) \quad \text{symmetrical} \quad \text{imply} \qquad \quad \text{mat}\!\left(A_{\hat{i}} \cdot \Lambda_{ij}\right) \quad \text{symmetrical}$

Radiation matrix (R) = $mat(A_i \cdot \Lambda_{ii})$ is symmetrical Proof!

$$\Lambda_{ij} = \frac{\varepsilon_i}{1 - \varepsilon_i} \cdot \left[\delta_{ij} - \left(\mathbf{X}^{-1} \right)_{ij} \right]$$
 It is sufficient to show that
$$\operatorname{mat} \left[\frac{\varepsilon_i}{1 - \varepsilon_i} \cdot \mathbf{A}_i \cdot \left(\mathbf{X}^{-1} \right)_{ij} \right]$$
 is symmetrical without the diagonal terms

$$\text{mat} \Bigg[\frac{\varepsilon_{i}}{1 - \varepsilon_{i}} \cdot A_{i} \cdot \left(\boldsymbol{X}^{-1} \right)_{ij} \Bigg] = \text{mat} \Bigg(\delta_{ij} \cdot \frac{\varepsilon_{i}}{1 - \varepsilon_{i}} \cdot A_{i} \Bigg) \cdot \left(\boldsymbol{X}^{-1} \right) \\ \text{is symmetrical imply also for its inverse} \\ \text{mat} \Bigg[\frac{\varepsilon_{i}}{1 - \varepsilon_{i}} \cdot A_{i} \cdot \left(\boldsymbol{X}^{-1} \right)_{ij} \Bigg]^{-1}$$

$$\operatorname{mat}\left[\frac{\varepsilon_{i}}{1-\varepsilon_{i}}\cdot A_{i}\cdot \left(X^{-1}\right)_{ij}\right]^{-1} = (X)\operatorname{mat}\left(\delta_{ij}\cdot \frac{\varepsilon_{i}}{1-\varepsilon_{i}}\cdot A_{i}\right)^{-1} = (X)\operatorname{mat}\left(\delta_{ij}\cdot \frac{1-\varepsilon_{i}}{\varepsilon_{i}}\cdot \frac{1}{A_{i}}\right)^{-1} = \operatorname{mat}\left(X_{ij}\cdot \frac{1-\varepsilon_{j}}{\varepsilon_{j}}\cdot \frac{1}{A_{j}}\right)$$

$$X_{ij} = \frac{\delta_{ij} - \left(1 - \varepsilon_i\right) \cdot F_{ij}}{\varepsilon_i} \qquad \text{It is sufficient to show that} \qquad \text{mat} \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \cdot F_{ij} \cdot \frac{1 - \varepsilon_j}{\varepsilon_j} \cdot \frac{1}{A_j}\right) \quad \text{is symmetrical without the diagonal terms}$$

$$\text{mat} \left(\frac{F_{ij}}{A_j} \cdot \frac{1 - \varepsilon_i}{\varepsilon_i} \cdot \frac{1 - \varepsilon_j}{\varepsilon_j} \right) \quad \text{symmetrical if also for} \qquad \text{mat} \left(\frac{F_{ij}}{A_j} \right)$$

$$mat\left(\frac{F_{ij}}{A_i}\right) \qquad \text{is symmetrical because the } \textbf{Reciprocity rule} \qquad mat\left(A_i \cdot F_{ij}\right) \quad symmetrical$$

References:

Radiation Heat Transfer.

Radiant interchange among diffusely emitting and diffusely reflecting surfaces, Interchange among Gray surfaces, E.M. **Sparrow**, R.D.

Cess, Hemisphere Publishing Corporation

www.KopooS.com

EcosimPro®

The formulation of this memo has been implemented in EcosimPro simulation tool: but that is much simpler, because only the main equations are written in the CONTINUOUS part, without any matrix inversion and other algebra stuff. (see the listing at right)

COMPONENT View_Factors

INTEGER nports = 6 "Number of thermal ports connected by the component (-)"

"Radiative heat transfer model among the nodes by means of the view factors, here for a room with 6 faces"

PORTS

IN thermal (n = 1) tp_in[nports] CARDINALITY 0, 1 "Thermal inlet ports"

DATA

REAL x=1 UNITS "m" "length along X axis"

REAL y=4 UNITS "m" "length along Y axis" REAL z=2 UNITS "m" "length along Z axis"

REAL e[nports] =1 UNITS "-" "Emissivity"

DECLS

REAL Tk[nports] UNITS "K" "Absolute node temperature"

REAL Q[nports] UNITS "W" "Net rate of radiated power: rule + when leaving the node i, - when heating the node i"

REAL Almortsi UNITS "m^2" "Area"

REAL H[nports] UNITS "W/m^2" "Incident heat power on i: rule + when arriving on the node i (i.e. + when leaving the other nodes j)"
REAL B[nports] UNITS "W/m^2" "Radiosity : Emitted + reflected heat power: rule + when leaving the node i, - when heating the node i"

REAL Emitted[nports] UNITS "W" "Emitted: heat power from i: rule + when leaving the node i, always positive" REAL VF[nports] UNITS "-" "View factor for each coupling (-)"

REAL ErrCumul UNITS "-" " near zero is ok; error check in the view factor function wrt Sum Fij and reciprocity rule AiFij=AjFij"

ASSERT (nports > 0) FATAL "View Factors component: Number of nodes must be at least 1"

ASSERT (ErrCumul<1e-6) WARNING "View Factors component ErrCumul" ViewFactorsRoomOrder162534(x,y,z,6, VF, A, ErrCumul) -- View factor function, face 6 is apposed to 1, etc.

EXPAND BLOCK (i IN 1, nports)

Q[i]=A[i]*Emitted[i]-A[i]*e[i]*H[i] -- e[i] is emission global factor = absorption too for grey bodies

Emitted[i]=e[i]*STEFAN*Tk[i]**4

H[i]=SUM(j IN 1,nports ;B[i]* VF[i,j])

B[i] = Emitted[i] + (1-e[i])*H[i] - (1-e[i]) is the reflection global factor of the context of

tp in/ii.q/11 =Q/ii

Tk[i] = tp_in[i].Tk[1] - Net temperatures in each node END EXPAND BLOCK

END COMPONENT